Saturday, March 14, 2009

Applications of databases

Databases are used in many applications, spanning virtually the entire range of computer software. Databases are the preferred method of storage for large multiuser applications, where coordination between many users is needed. Even individual users find them convenient, and many electronic mail programs and personal organizers are based on standard database technology. Software database drivers are available for most database platforms so that application software can use a commonApplication Programming Interface to retrieve the information stored in a database. Two commonly used database APIs are JDBC and ODBC.

Database models

Post-relational database models

Products offering a more general data model than the relational model are sometimes classified as post-relational. The data model in such products incorporates relations but is not constrained by the Information Principle, which requires that all information is represented by data values in relations.

Some of these extensions to the relational model actually integrate concepts from technologies that pre-date the relational model. For example, they allow representation of a directed graph with trees on thenodes.

Some products implementing such models have been built by extending relational database systems with non-relational features. Others, however, have arrived in much the same place by adding relational features to pre-relational systems. Paradoxically, this allows products that are historically pre-relational, such as PICK and MUMPS, to make a plausible claim to be post-relational in their current architecture.

[edit]Object database models

In recent years, the object-oriented paradigm has been applied to database technology, creating a new programming model known as object databases. These databases attempt to bring the database world and the application programming world closer together, in particular by ensuring that the database uses the same type system as the application program. This aims to avoid the overhead (sometimes referred to as the impedance mismatch) of converting information between its representation in the database (for example as rows in tables) and its representation in the application program (typically as objects). At the same time, object databases attempt to introduce the key ideas of object programming, such asencapsulation and polymorphism, into the world of databases.

A variety of these ways have been tried for storing objects in a database. Some products have approached the problem from the application programming end, by making the objects manipulated by the program persistent. This also typically requires the addition of some kind of query language, since conventional programming languages do not have the ability to find objects based on their information content. Others have attacked the problem from the database end, by defining an object-oriented data model for the database, and defining a database programming language that allows full programming capabilities as well as traditional query facilities.

Database management systems

A computer database relies on software to organize the storage of data. This software is known as adatabase management system (DBMS). Database management systems are categorized according to the database model that they support. The model tends to determine the query languages that are available to access the database. A great deal of the internal engineering of a DBMS, however, is independent of the data model, and is concerned with managing factors such as performance, concurrency, integrity, and recovery from hardware failures. In these areas there are large differences between products.

A Relational Database Management System (RDBMS) implements the features of the relational model outlined above. In this context, Date's "Information Principle" states: "the entire information content of the database is represented in one and only one way. Namely as explicit values in column positions (attributes) and rows in relations (tuples). Therefore, there are no explicit pointers between related tables."

Database

database is a structured collection of records or data that is stored in a computer system. The structure is achieved by organizing the data according to a database model. The model in most common use today is the relational model. Other models such as the hierarchical model and the network model use a more explicit representation of relationships.

Architecture

Depending on the intended use, there are a number of database architectures in use. Many databases use a combination of strategies. On-line Transaction Processing systems (OLTP) often use a row-oriented datastore architecture, while data-warehouse and other retrieval-focused applications likeGoogle's BigTable, or bibliographic database (library catalogue) systems may use a Column-oriented DBMS architecture.

Document-Oriented, XMLknowledgebases, as well as frame databases and RDF-stores (aka triple-stores), may also use a combination of these architectures in their implementation.

Finally, it should be noted that not all databases have or need a database 'schema' (so called schema-less databases).

Over many years the database industry has been dominated by General Purpose database systems, which offer a wide range of functions that are applicable to many, if not most circumstances in modern data processing. These have been enhanced with extensible datatypes, pioneered in the PostgreSQLproject, to allow a very wide range of applications to be developed.

There are also other types of database which cannot be classified as relational databases.